Problems

Age
Difficulty
Found: 2674

A conference was attended by a finite group of scientists, some of whom are friends. It turned out that every two scientists, who have an equal number of friends at the conference, do not have friends in common. Prove that there is a scientist who has exactly one friend among the conference attendees.

A spherical sun is observed to have a finite number of circular sunspots, each of which covers less than half of the sun’s surface. These sunspots are said to be enclosed, that is no two sunspots can touch, and they do not overlap with one another. Prove that the sun will have two diametrically opposite points that are not covered by sunspots.

There are several squares on a rectangular sheet of chequered paper of size \(m \times n\) cells, the sides of which run along the vertical and horizontal lines of the paper. It is known that no two squares coincide and no square contains another square within itself. What is the largest number of such squares?

At what value of \(k\) is the quantity \(A_k = (19^k + 66^k)/k!\) at its maximum? You are given a number \(x\) that is greater than 1. Is the following inequality necessarily fulfilled \(\lfloor \sqrt{\!\sqrt{x}}\rfloor = \lfloor \sqrt{\!\sqrt{x}}\rfloor\)?

We consider a function \(y = f (x)\) defined on the whole set of real numbers and satisfying \(f (x + k) \times (1 - f (x)) = 1 + f (x)\) for some number \(k \ne 0\). Prove that \(f (x)\) is a periodic function.

In a square with side length 1 there is a broken line, which does not self-intersect, whose length is no less than 200. Prove that there is a straight line parallel to one of the sides of the square that intersects the broken line at a point no less than 101 units along the line.

A square \(ABCD\) contains 5 points. Prove that the distance between some pair of these points does not exceed \(\frac{1}{2} AC\).

Peter bought an automatic machine at the store, which for 5 pence multiplies any number entered into it by 3, and for 2 pence adds 4 to any number. Peter wants, starting with a unit that can be entered free of charge to get the number 1981 on the machine number whilst spending the smallest amount of money. How much will the calculations cost him? What happens if he wants to get the number 1982?