Problems

Age
Difficulty
Found: 761

Having mastered tiling small rooms, Robinson wondered if he could tile big spaces, and possibly very big spaces. He wondered if he could tile the whole plane. He started to study the tiling, which can be continued infinitely in any direction. Can you help him with it?

Tile the whole plane with the following shapes:

Robinson Crusoe was taking seriously the education of Friday, his friend. Friday was very good at maths, and one day he cut 12 nets out of hardened goat skins. He claimed that it was possible to make a cube out of each net. Robinson looked at the patterns, and after some considerable thought decided that he was able to make cubes from all the nets except one. Can you figure out which net cannot make a cube?

It is known that it is possible to cover the plane with any cube’s net. (You will see it in the film that will be shown at the end of this session). But Robinson, unfortunately, lived on an uninhabited island in the 19th century, and did not know about the film. Try to help him to figure out how to cover the plane with nets \(\#2\), \(\#6\), and \(\#8\) from the previous exercise.

Think of other shapes Robinson’s goat can graze without a wolf, or with a wolf tied nearby. What if Robinson managed to tame several wolves and used them as guard dogs? Can two tied wolves keep an untied goat in a triangle? Can you think of other shapes you can create with Robinson’s goat and wolves?

While studying numbers and its properites, Robinson came across a 3-digit prime number with the last digit being equal to the sum of the first two digits. What was the last digit of that number if among the number did not have any zeros among it’s digits?

Robinson found a chest with books and instruments after the ship wreck. Not all the books were in readable condition, but some of the books he managed to read. One sentence read “72 chickens cost *619* p”. (The starred digits were not readable). He has not tasted a chicken for quite some time, and it was pleasant to imagine a properly cooked chicken in front of him. He also was able to decipher the cost of one chicken. Can you?

When Robinson Crusoe’s friend and assistant named Friday learned about divisibility rules, he was so impressed that he proposed his own rule:

a number is divisible by 27 if the sum of it’s digits is divisible by 27.

Was he right?

One day Friday multiplied all the numbers from 1 to 100. The product appeared to be a pretty large number, and he added all the digits of that number to receive a new smaller number. Even then he did not think the number was small enough, and added all the digits again to receive a new number. He continued this process of adding all the digits of the newly obtained number again and again, until finally he received a one-digit number. Can you tell what number was it?

Robinson Crusoe’s friend Friday was looking at \(3\)-digit numbers with the same first and third digits. He soon noticed that such number is divisible by \(7\) if the sum of the second and the third digits is divisible by \(7\). Prove that he was right.

2016 digits are written in a circle. It is known, that if you make a number reading the digits clockwise, starting from some particular place, then the resulting 2016-digit number is divisible by 27. Show that if you start from some other place, and moving clockwise make up another 2016-digit number, then this new number is also divisible by 27.