Problems

Age
Difficulty
Found: 2546

A square is cut by 18 straight lines, 9 of which are parallel to one side of the square and the other 9 parallel to the other – perpendicular to the first 9 – dividing the square into 100 rectangles. It turns out that exactly 9 of these rectangles are squares. Prove that among these 9 squares there will be two that are identical.

In a row there are 2023 numbers. The first number is 1. It is known that each number, except the first and the last, is equal to the sum of two neighboring ones. Find the last number.

A game takes place on a squared \(9 \times 9\) piece of checkered paper. Two players play in turns. The first player puts crosses in empty cells, its partner puts noughts. When all the cells are filled, the number of rows and columns in which there are more crosses than zeros is counted, and is denoted by the number \(K\), and the number of rows and columns in which there are more zeros than crosses is denoted by the number \(H\) (18 rows in total). The difference \(B = K - H\) is considered the winnings of the player who goes first. Find a value of B such that

1) the first player can secure a win of no less than \(B\), no matter how the second player played;

2) the second player can always make it so that the first player will receive no more than \(B\), no matter how he plays.

Two people are playing. The first player writes out numbers from left to right, randomly alternating between 0 and 1, until there are 2021 numbers in total. Each time after the first one writes out the next digit, the second switches two numbers from the already written row (when only one digit is written, the second misses its move). Is the second player always able to ensure that, after his last move, the arrangement of the numbers is symmetrical relative to the middle number?

In Conrad’s collection there are four royal gold five-pound coins. Conrad was told that some two of them were fake. Conrad wants to check (prove or disprove) that among the coins there are exactly two fake ones. Will he be able to do this with the help of two weighings on weighing scales without weights? (Counterfeit coins are the same in weight, real ones are also the same in weight, but false ones are lighter than real ones.)

Are there such irrational numbers \(a\) and \(b\) so that \(a > 1\), \(b > 1\), and \(\lfloor a^m\rfloor\) is different from \(\lfloor b^n\rfloor\) for any natural numbers \(m\) and \(n\)?

Janine and Zahara each thought of a natural number and said them to Alex. Alex wrote the sum of the thought of numbers onto one sheet of paper, and on the other – their product, after which one of the sheets was hidden, and the other (on it was written the number of 2002) was shown to Janine and Zahara. Seeing this number, Janine said that she did not know what number Zahara had thought of. Hearing this, Zahara said that she did not know what number Janine had thought of. What was the number which Zahara had thought of?

On a table there are 2022 cards with the numbers 1, 2, 3, ..., 2022. Two players take one card in turn. After all the cards are taken, the winner is the one who has a greater last digit of the sum of the numbers on the cards taken. Find out which of the players can always win regardless of the opponent’s strategy, and also explain how he should go about playing.

2022 dollars were placed into some wallets and the wallets were placed in some pockets. It is known that there are more wallets in total than there are dollars in any pocket. Is it true that there are more pockets than there are dollars in one of the wallets? You are not allowed to place wallets one inside the other.

Two players in turn paint the sides of an \(n\)-gon. The first one can paint the side that borders either zero or two colored sides, the second – the side that borders one painted side. The player who can not make a move loses. At what \(n\) can the second player win, no matter how the first player plays?