In Rabbitland you can get from any city to any other city. Bugs Bunny decided to find out what is the largest number of cities he can visit, while never visiting any city twice. He can start from any city and finish at any other. He realised that there are two longest paths he can take and they both involve the same number of cities. Show that those two paths have at least one city in common.
There are
An animal with
Remainder is the number that is “left over" from division. Even if a number is not divisible by another number fully, we can still divide, but leaving a remainder. The remainder is less than the number we’re dividing by. For example, a remainder of
The general rule is that a remainder of a sum, difference or a product of two remainders is equal to the remainder of a sum, difference or a product of the original numbers. What that means is if we want to find a remainder of a product of two numbers, we need to look at the individual remainders, multiply them, and then take a remainder.
For example,
Let’s have a look on some examples:
What time is it going to be in
Prove that the product of five consecutive integers is divisible by
Prove that if
The natural numbers
Prove that for an arbitrary odd
Certain geometric objects nicely blend when they happen to be together in a problem. One possible example of such a pair of objects is a circle and an inscribed angle.
We will be using the following statements in the examples and problems:
1. The supplementary angles (angles “hugging" a straight line) add up to
2. The sum of all internal angles of a triangle is also
3. Two triangles are said to be “congruent" if ALL their corresponding sides and angles are equal.
We recommend solving the problems in this sheet in the order of appearance, as some problems use statements from previous problems as a step in the solution. Specifically, the inscribed angle theorem (problem 2) is required to solve every other problem that comes after it.