In the first term of the year Daniel received five grades in mathematics with each of them being on a scale of 1 to 5, and the most common grade among them was a 5 . In this case it turned out that the median of all his grades was 4, and the arithmetic mean was 3.8. What grades could Daniel have?
10 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of pasta into every other child’s bowl. What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
100 children were each given a bowl with 100 pieces of pasta. However, these children did not want to eat and instead started to play. One of the children started to place one piece of her pasta into other children’s bowls (to whomever she wants). What is the least amount of transfers needed so that everyone has a different number of pieces of pasta in their bowl?
30 pupils in years 7 to 11 each created at least one maths problem, making 40 maths problems altogether. Every possible pair of pupils in the same year created the same number of problems. Every possible pair of pupils in different years created a different number of problems. How many pupils created exactly one problem?
Is it possible to place the numbers \(1, 2,\dots 12\) around a circle so that the difference between any two adjacent numbers is 3, 4, or 5?
In March 2015 a teacher ran 11 sessions of a maths club. Prove that if no sessions were run on Saturdays or Sundays there must have been three days in a row where a session of the club did not take place. The 1st March 2015 was a Sunday.
A traveller rents a room in an inn for a week and offers the innkeeper a chain of seven silver links as payment – one link per day, with the condition that they will be payed everyday. The innkeeper agrees, with the condition that the traveller can only cut one of the links. How did the traveller manage to pay the innkeeper?
There are 6 locked suitcases and 6 keys for them. It is not known which keys are for which suitcase. What is the smallest number of attempts do you need in order to open all the suitcases? How many attempts would you need if there are 10 suitcases and keys instead of 6?