Problem #PRU-35198

Problems Discrete Mathematics Algorithm Theory Theory of algorithms (other)

Problem

A \(99 \times 99\) chequered table is given, each cell of which is painted black or white. It is allowed (at the same time) to repaint all of the cells of a certain column or row in the colour of the majority of cells in that row or column. Is it always possible to have that all of the cells in the table are painted in the same colour?