Problem #PRU-57309

Problems Geometry Plane geometry Geometrical inequalities Triangle inequality Triangle inequality algebra problems

Problem

\(a\), \(b\) and \(c\) are the lengths of the sides of an arbitrary triangle. Prove that \(a = y + z\), \(b = x + z\) and \(c = x + y\), where \(x\), \(y\) and \(z\) are positive numbers.