We denote by Pk,l(n) the number of partitions of the number n into at most k terms, each of which does not exceed l. Prove the equalities:
a) Pk,l(n)−Pk,l−1(n)=Pk−1,l(n−l);
b) Pk,l(n)−Pk−1,l(n)=Pk,l−1(n−k);
c) Pk,l(n)=Pl,k(n);
d) Pk,l(n)=Pk,l(kl−n).