Problem #PRU-64694

Problems Discrete Mathematics Set theory and logic Mathematical logic Mathematical logic (other)

Problem

Author: N. Medved

Peter and Victoria are playing on a board measuring \(7 \times 7\). They take turns putting the numbers from 1 to 7 in the board cells so that the same number does not appear in one line nor in one column. Peter goes first. The player who loses is the one who cannot make a move. Who of them can win, no matter how the opponent plays?