Problem #PRU-5070

Problems Number Theory Number theory. Divisibility

Problem

Prove the magic trick for the number \(1089 = 33^2\): if you take any \(3\)-digit number \(\overline{abc}\) with digits coming in strictly descending order and subtract from it the number obtained by reversing the digits of the original number \(\overline{abc} - \overline{cba}\) you get another \(3\)-digit number, call it \(\overline{xyz}\). Then, no matter which number you started with, the sum \(\overline{xyz} + \overline{zyx} = 1089\).
Recall that a number \(\overline{abc}\) is divisible by \(11\) if and only if \(a-b+c\) also is.