Suppose that \(x_1+y_1\sqrt{d}\) and \(x_2+y_2\sqrt{d}\) give solutions to Pell’s equation \(x^2-dy^2=1\) and \(x_1,x_2,y_1,y_2\geq 0\). Show that the following are equivalent:
\(x_1+y_1\sqrt{d} < x_2+y_2\sqrt{d}\),
\(x_1<x_2\) and \(y_1<y_2\),
\(x_1<x_2\) or \(y_1<y_2\).