Suppose that Pell’s equation \(x^2-dy^2=1\) has a solution \((x_1,y_1)\) where \(x_1,y_1\) are positive and \(y_1\) is minimal among all solutions with positive \(x,y\). Show that if \(x+y\sqrt{d}\) gives a solution to \(x^2-dy^2=1\), then \(x+y\sqrt{d}=\pm(x_1+y_1\sqrt{d})^k\) for some integer \(k\).