Problem #WSP-000533

Problems Polynomials Algebra

Problem

Let \(P(x)\) be a polynomial with integer coefficients. Set \(P^1(x) = P(x)\) and \(P^{i+1}(x) = P(P^i(x))\). Show that if \(t\) is an integer such that \(P^k(t)=t\) for some natural number \(k\), then in fact we have \(P^2(t) = t\).