Problem #PRU-30713

Problems Geometry Solid geometry Visual geometry in space

Problem

Prove that every number \(a\) in Pascal’s triangle is equal to

a) the sum of the numbers of the previous right diagonal, starting from the leftmost number up until the one to the right above the number \(a\).

b) the sum of the numbers of the previous left diagonal, starting from the leftmost number to the one to left of the number which is above \(a\).