Problems

Age
Difficulty
Found: 272

Let \(n\) be an integer number. Denote by \(\phi(n)\) the number of integers from \(1\) to \(n-1\) coprime with \(n\). Find \(\phi(n)\) for the following cases:

  • \(n\) is a prime number.

  • \(n = p^k\) for a prime \(p\).

  • \(n=pq\) for two different primes \(p\) and \(q\).

Let \(n\) be an integer number, \(a\) be an integer, coprime with \(n\). Prove that \(a^{\phi(n)-1}-1\) is divisible by \(n\).

Let \(\phi(n)\) be the Euler’s function, namely the amount of numbers from \(1\) to \(n\), coprime with \(n\). For two natural numbers \(m,n\) such that \(\mathbb{GCD}(m,n)=1\) prove that \(\phi(mn) = \phi(m)\phi(n)\).

For any positive integer \(k\), the factorial \(k!\) is defined as a product of all integers between 1 and \(k\) inclusive: \(k! = k \times (k-1) \times ... \times 1\). What’s the remainder when \(2025!+2024!+2023!+...+3!+2!+1!\) is divided by \(8\)?

Let \(a\) and \(b\) be two different \(9\)-digit numbers. It is known that each one of them contains all of the digits \(1,2,...9\). Find the maximal value of \(\gcd(a,b)\).

For an odd number \(N\) denote by \(A\) the minimal positive difference between prime divisors of \(N\), denote by \(B\) the minimal positive difference between composite divisors of \(N\). Usually we have \(A<B\), but can we have \(A>B\)? (Disregard numbers such as \(15\) where one of \(A\) or \(B\) is not defined)

Let \(n\) be an integer bigger than \(1\), and \(p\) a prime number. Suppose that \(n\) divides \(p-1\) and \(p\) divides \(n^3-1\). Prove that \(4p-3\) is a square number.

Let \(n\) be a composite number. Arrange the factors of \(n\) greater than \(1\) in a circle. When can this be done such that neighbours in the circle are never coprime?

Let \(x\), \(y\), \(z\) and \(w\) be non-negative integers. Find all solutions to \(2^x3^y-5^z7^w=1\).

A natural number \(N\) is called perfect if it equals the sum of its divisors, except for \(N\) itself. Prove that if \(2^r-1\) is prime, then \((2^r-1)2^{r-1}\) is a perfect number. Are there any odd perfect numbers?