Problems

Age
Difficulty
Found: 135

Three tortoises crawl along the road in a line. “Two tortoises are crawling behind me,” says the first. “One tortoise is crawling behind me, and one tortoise is crawling in front of me,” says the second. “Two tortoises are crawling in front of me, and one tortoise is crawling behind me,” says the third. How can this be?

Three wise men ride on a train. Suddenly the train drives into a tunnel, and after the lights come on, each of the men sees that the faces of his colleagues are stained with soot that has flown through the car window. All three begin to laugh at their stained companions, but suddenly the most intelligent man guesses that his face is also stained. How did he do it?

In each cell of a \(25 \times 25\) square table, one of the numbers 1, 2, 3, ..., 25 is written. In cells, that are symmetric relative to the main diagonal, equal numbers are written. There are no two equal numbers in any row and in any column. Prove that the numbers on the main diagonal are pairwise distinct.

Numbers from 1 to 20 are written in a row. Players take turns placing pluses and minuses between these numbers. After all of the gaps are filled, the result is calculated. If it is even, then the first player wins, if it is odd, then the second player wins. Who won?

a) Two in turn put bishops in the cells of a chessboard. The next move must beat at least one empty cell. The bishop also beats the cell in which it is located. The player who loses is the one who cannot make a move.

b) Repeat the same, but with rooks.

There are two piles of sweets: one with 20 sweets and the other with 21 sweets. In one go, one of the piles needs to be eaten, and the second pile is divided into two not necessarily equal piles. The player that cannot make a move loses. Which player wins and which one loses?

The game begins with the number 0. In one go, it is allowed to add to the actual number any natural number from 1 to 9. The winner is the one who gets the number 100.

Four aliens – Dopey, Sleepy, Happy, Moody from the planet of liars and truth tellers had a conversation: Dopey to Sleepy: “you are a liar”; Happy to Sleepy: “you are a liar”; Moody to Happy: “Yes, they are both liars,” (after a moment’s thought), “however, so are you.” Which of them is telling the truth?

One of five brothers baked a cake for their Mum. Alex said: “This was Vernon or Tom.” Vernon said: “It was not I and not Will who did it.” Tom said: “You’re both lying.” David said: “No, one of them told the truth, and the other was lying.” Will said: “No David, you’re wrong.” Mum knows that three of her sons always tell the truth. Who made the cake?

It is known that among the members of the government of the Planet of Liars and truth tellers, consisting of 20 members, there is at least one honest one, and also that from any two at least one is a bribe taker. How many bribe takers are there in the government?