An adventurer is travelling to the planet of liars and truth tellers with an official guide and is introduced to a local. “Are you a truth teller?” asked the adventurer. The alien answers “Yrrg,” which means either “yes” or “no”. The adventurer asks the guide for a translation. The guide says “"yrrg" means "yes". I will add that the local is actully a liar.” Is the local alien liar or truth teller?
In a certain realm there are magicians, sorcerers and wizards. The following is known about them: firstly, not all magicians are sorcerers, and secondly, if the wizard is not a sorcerer, then he is not a magician. Is it true that not all magicians are wizards?
A traveller on the planet of liars and truth tellers met four people and asked them: “Who are you?”. They received the following answers:
1st: “We are all liars.”
2nd: “Among us is exactly one liar.”
3rd: “Among us there are two liars.”
4th: “I have never lied and I’m not lying”.
The traveller quickly realised who the fourth resident was. How did they do it?
In the lower left corner of an 8 by 8 chessboard is a chip. Two in turn move it one cell up, right or right-up diagonally. The one who puts the chip in the upper right corner wins. Who will win in a regular game?
a) There are 10 coins. It is known that one of them is fake (by weight, it is heavier than the real ones). How can you determine the counterfeit coin with three weighings on scales without weights?
b) How can you determine the counterfeit coin with three weighings, if there are 27 coins?
Several guests are sitting at a round table. Some of them are familiar with each other; mutually acquainted. All the acquaintances of any guest (counting himself) sit around the table at regular intervals. (For another person, these gaps may be different.) It is known that any two have at least one common acquaintance. Prove that all guests are familiar with each other.
On the selection to the government of the planet of liars and truth tellers \(12\) candidates gave a speech about themselves. After a while, one said: “before me only once did someone lie” Another said: “And now-twice.” “And now – thrice” – said the third, and so on until the \(12\)th, who said: “And now \(12\) times someone has lied.” Then the presenter interrupted the discussion. It turned out that at least one candidate correctly counted how many times someone had lied before him. So how many times have the candidates lied?
A family went to the bridge at night. The dad can cross it in 1 minute, the mum in 2 minutes, the child in 5 minutes, and the grandmother in 10 minutes. They have one flashlight. The bridge only withstands two people. How can they cross the bridge in 17 minutes? (If two people cross, then they pass with the lower of the two speeds. They cannot pass along the bridge without a flashlight. They cannot shine the light from afar. They cannot carry anyone in their arms. They cannot throw the flashlight.)
Several stones weigh 10 tons together, each weighing not more than 1 ton.
a) Prove that this load can be taken away in one go on five three-ton trucks.
b) Give an example of a set of stones satisfying the condition for which four three-ton trucks may not be enough to take the load away in one go.
The planet has \(n\) residents, some are liars and some are truth tellers. Each resident said: “Among the remaining residents of the island, more than half are liars.” How many liars are on the island?