Problems

Age
Difficulty
Found: 20

Having mastered tiling small rooms, Robinson wondered if he could tile big spaces, and possibly very big spaces. He wondered if he could tile the whole plane. He started to study the tiling, which can be continued infinitely in any direction. Can you help him with it?

Tile the whole plane with the following shapes:

Robinson Crusoe was taking seriously the education of Friday, his friend. Friday was very good at maths, and one day he cut 12 nets out of hardened goat skins. He claimed that it was possible to make a cube out of each net. Robinson looked at the patterns, and after some considerable thought decided that he was able to make cubes from all the nets except one. Can you figure out which net cannot make a cube?

It is known that it is possible to cover the plane with any cube’s net. (You will see it in the film that will be shown at the end of this session). But Robinson, unfortunately, lived on an uninhabited island in the 19th century, and did not know about the film. Try to help him to figure out how to cover the plane with nets \(\#2\), \(\#6\), and \(\#8\) from the previous exercise.

Remove a \(1 \times 1\) square from the corner of a \(4 \times 4\) square. Can this shape be dissected into \(3\) congruent parts?
image

Giuseppe has a sheet of plywood, measuring \(22 \times 15\). Giuseppe wants to cut out as many rectangular blocks of size \(3 \times 5\) as possible. How should he do it?