Problems

Age
Difficulty
Found: 220

On the occasion of the beginning of the winter holidays all of the boys from class 8B went to the shooting range. It is known that there are \(n\) boys in 8B. There are \(n\) targets at the shooting range which the class attended. Each of the boys randomly chooses a target, while some of the boys could choose the same target. After this, all of the boys simultaneously attempt to shoot their target. It is known that each of the boys hits their target. The target is considered to be affected if at least one boy has hit it.

a) Find the average number of affected targets.

b) Can the average number of affected targets be less than \(n/2\)?

A fly moves from the origin only to the right or upwards along the lines of the integer grid (a monotonic wander). In each node of the net, the fly randomly selects the direction of further movement: upwards or to the right.

a) Prove that sooner or later the fly will reach the point with abscissa 2011.

b) Find the mathematical expectation of the ordinate of the fly at the moment when the fly reached the abscissa 2011.

Hercules meets the three-headed snake Hydra of Lerna. Every minute, Hercules chops off one head of the snake. Let \(x\) be the survivability of the snake (\(x > 0\)). The probability \(p_s\) of the fact that in the place of the severed head will grow s new heads \((s = 0, 1, 2)\) is equal to \(\frac{x^s}{1 + x + x^2}\).

During the first 10 minutes of the battle, Hercules recorded how many heads grew in place of each chopped off one. The following vector was obtained: \(K = (1, 2, 2, 1, 0, 2, 1, 0, 1, 2)\). Find the value of the survivability of the snake, under which the probability of the vector \(K\) is greatest.

Author: A.V. Shapovalov

We call a triangle rational if all of its angles are measured by a rational number of degrees. We call a point inside the triangle rational if, when we join it by segments with vertices, we get three rational triangles. Prove that within any acute-angled rational triangle there are at least three distinct rational points.

The functions \(f\) and \(g\) are defined on the entire number line and are reciprocal. It is known that \(f\) is represented as a sum of a linear and a periodic function: \(f (x) = kx + h (x)\), where \(k\) is a number, and \(h\) is a periodic function. Prove that \(g\) is also represented in this form.

It is known that \(a > 1\). Is it always true that \(\lfloor \sqrt{\lfloor \sqrt{a}\rfloor }\rfloor = \lfloor \sqrt{4}{a}\rfloor\)?

At a contest named “Ah well, monsters!”, 15 dragons stand in a row. Between neighbouring dragons the number of heads differs by 1. If the dragon has more heads than both of his two neighbors, he is considered cunning, if he has less than both of his neighbors – strong, the rest (including those standing at the edges) are considered ordinary. In the row there are exactly four cunning dragons – with 4, 6, 7 and 7 heads and exactly three strong ones – with 3, 3 and 6 heads. The first and last dragons have the same number of heads.

a) Give an example of how this could occur.

b) Prove that the number of heads of the first dragon in all potential examples is the same.

Is there a positive integer \(n\) such that \[\sqrt{n}{17\sqrt{5} + 38} + \sqrt{n}{17\sqrt{5} - 38} = 2\sqrt{5}\,?\]