Problems

Age
Difficulty
Found: 220

Author: G. Zhukov

The square trinomial \(f (x) = ax^2 + bx + c\) that does not have roots is such that the coefficient \(b\) is rational, and among the numbers \(c\) and \(f (c)\) there is exactly one irrational.

Can the discriminant of the trinomial \(f (x)\) be rational?

A firm recorded its expenses in pounds for 100 items, creating a list of 100 numbers (with each number having no more than two decimal places). Each accountant took a copy of the list and found an approximate amount of expenses, acting as follows. At first, he arbitrarily chose two numbers from the list, added them, discarded the sum after the decimal point (if there was anything) and recorded the result instead of the selected two numbers. With the resulting list of 99 numbers, he did the same, and so on, until there was one whole number left in the list. It turned out that in the end all the accountants ended up with different results. What is the largest number of accountants that could work in the company?

Author: A. Khrabrov

Do there exist integers \(a\) and \(b\) such that

a) the equation \(x^2 + ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + ax + b = 0\) does have roots?

b) the equation \(x^2 + 2ax + b = 0\) does not have roots, and the equation \(\lfloor x^2\rfloor + 2ax + b = 0\) does have roots?

Note that here, square brackets represent integers and curly brackets represent non-integer values or 0.

Author: A.K. Tolpygo

12 grasshoppers sit on a circle at various points. These points divide the circle into 12 arcs. Let’s mark the 12 mid-points of the arcs. At the signal the grasshoppers jump simultaneously, each to the nearest clockwise marked point. 12 arcs are formed again, and jumps to the middle of the arcs are repeated, etc. Can at least one grasshopper return to his starting point after he has made a) 12 jumps; b) 13 jumps?

The function \(f (x)\) is defined for all real numbers, and for any \(x\) the equalities \(f (x + 2) = f (2 - x)\) and \(f (x + 7) = f (7 - x)\) are satisfied. Prove that \(f (x)\) is a periodic function.

George drew an empty table of size \(50 \times 50\) and wrote on top of each column and to the left of each row, a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down the sum of the numbers written at the start of the corresponding row and column (“addition table”). What is the largest number of sums in this table that could be rational numbers?

We took several positive numbers and constructed the following sequence: \(a_1\) is the sum of the initial numbers, \(a_2\) is the sum of the squares of the original numbers, \(a_3\) is the sum of the cubes of the original numbers, and so on.

a) Could it happen that up to \(a_5\) the sequence decreases (\(a_1> a_2> a_3> a_4> a_5\)), and starting with \(a_5\) – it increases (\(a_5 < a_6 < a_7 <\dots\))?

b) Could it be the other way around: before \(a_5\) the sequence increases, and starting with \(a_5\) – decreases?

The number \(x\) is such that both the sums \(S = \sin 64x + \sin 65x\) and \(C = \cos 64x + \cos 65x\) are rational numbers.

Prove that in both of these sums, both terms are rational.