Problems

Age
Difficulty
Found: 219

Liouville’s discrete theorem. Let \(f (x, y)\) be a bounded harmonic function (see the definition in problem number 11.28), that is, there exists a positive constant \(M\) such that \(\forall (x, y) \in \mathbb {Z}^2\) \(| f (x, y) | \leq M\). Prove that the function \(f (x, y)\) is equal to a constant.

Prove that the polynomial \(P (x)\) is divisible by its derivative if and only if \(P (x)\) has the form \(P(x) = a_n(x - x_0)^n\).

Prove that for \(n > 0\) the polynomial \[P (x) = n^2x^{n + 2} - (2n^2 + 2n - 1) x^{n + 1} + (n + 1)^2x^n - x - 1\] is divisible by \((x - 1)^3\).

Prove that for \(n> 0\) the polynomial \(x^{2n + 1} - (2n + 1)x^{n + 1} + (2n + 1)x^n - 1\) is divisible by \((x - 1)^3\).

Prove that the polynomial \(P (x) = a_0 + a_1x + \dots + a_nx^n\) has a number \(-1\) which is a root of multiplicity \(m + 1\) if and only if the following conditions are satisfied: \[\begin{aligned} a_0 - a_1 + a_2 - a_3 + \dots + (-1)^{n}a_n &= 0,\\ - a_1 + 2a_2 - 3a_3 + \dots + (-1)^{n}na_n &= 0,\\ \dots \\ - a_1 + 2^{m}a_2 - 3^{m}a_3 + \dots + (-1)^{n}n^{m}a_n &= 0. \end{aligned}\]

Find the largest value of the expression \(a + b + c + d - ab - bc - cd - da\), if each of the numbers \(a\), \(b\), \(c\) and \(d\) belongs to the interval \([0, 1]\).

Hannah placed 101 counters in a row which had values of 1, 2 and 3 points. It turned out that there was at least one counter between every two one point counters, at least two counters lie between every two two point counters, and at least three counters lie between every two three point counters. How many three point counters could Hannah have?

A polynomial of degree \(n > 1\) has \(n\) distinct roots \(x_1, x_2, \dots , x_n\). Its derivative has the roots \(y_1, y_2, \dots , y_{n-1}\). Prove the inequality \[\frac{x_1^2 + \dots + x_n^2}{n}> \frac{y_1^2 + \dots + y_n^2}{n}.\]