Problems

Age
Difficulty
Found: 2451

In the secret service, there are \(n\) agents – 001, 002, ..., 007, ..., \(n\). The first agent monitors the one who monitors the second, the second monitors the one who monitors the third, etc., the nth monitors the one who monitors the first. Prove that \(n\) is an odd number.

Construct a function defined at all points on a real line which is continuous at exactly one point.

In a square which has sides of length 1 there are 100 figures, the total area of which sums to more than 99. Prove that in the square there is a point which belongs to all of these figures.

Every point in a plane, which has whole-number co-ordinates, is plotted in one of \(n\) colours. Prove that there will be a rectangle made out of 4 points of the same colour.

Prove that multiplying the polynomial \((x + 1)^{n-1}\) by any polynomial different from zero, we obtain a polynomial having at least \(n\) nonzero coefficients.

One of \(n\) prizes is embedded in each chewing gum pack, where each prize has probability \(1/n\) of being found.

How many packets of gum, on average, should I buy to collect the full collection prizes?

On a board of size \(8 \times 8\), two in turn colour the cells so that there are no corners of three coloured squares. The player who can’t make a move loses. Who wins with the right strategy?

On a plane there are 100 sheep-points and one wolf-point. In one move, the wolf moves by no more than 1, after which one of the sheep moves by a distance of no more than 1, after that the wolf again moves, etc. At any initial location of the points, will a wolf be able to catch one of the sheep?

Every evening Ross arrives at a random time to the bus stop. Two bus routes stop at this bus stop. One of the routes takes Ross home, and the other takes him to visit his friend Rachel. Ross is waiting for the first bus and depending on which bus arrives, he goes either home or to his friend’s house. After a while, Ross noticed that he is twice as likely to visit Rachel than to be at home. Based on this, Ross concludes that one of the buses runs twice as often as the other. Is he right? Can buses run at the same frequency when the condition of the task is met? (It is assumed that buses do not run randomly, but on a certain schedule).