In a room, there are 85 red and blue balloons. It is known that: 1) at least one of the balloons is red; 2) from each arbitrarily chosen pair of balloons at least one blue. How many red balloons are there in the room?
Is the number \(10^{2002} + 8\) divisible by 9?
Is the sum of the numbers \(1 + 2 + 3 + \dots + 1999\) divisible by 1999?
Try to read the word in the first figure, using the key (see the second figure).
Before you is a lock “with a secret” (see the picture).
If you put the arrows on the desired letters, you will get the keyword and the lock will open. What is this word?
Six chess players participated in a tournament. Each two participants of the tournament played one game against each other. How many games were played? How many games did each participant play? How many points did the chess players collect all together?
Is it possible to fill a \(5 \times 5\) table with numbers so that the sum of the numbers in each row is positive and the sum of the numbers in each column is negative?
The distance between Athos and Aramis, galloping along one road, is 20 leagues. In an hour Athos covers 4 leagues, and Aramis – 5 leagues.
What will the distance between them be in an hour?
From a set of weights with masses 1, 2, ..., 101 g, a weight of 19 grams was lost. Can the remaining 100 weights be divided into two piles of 50 weights each in such a way that the masses of both piles are the same?
Pinocchio and Pierrot were racing. Pierrot ran the entire race at the same speed, and Pinocchio ran half the way two times faster than Pierrot, and the second half twice as slow as Pierrot. Who won the race?