Problems

Age
Difficulty
Found: 3121

Four siblings received magic wands for Christmas. It turned out that any three magic wands can form a triangle in such a way that the areas of all four triangles are equal. Are all the magic wands necessarily the same length?

A goat and a cow would take \(45\) days to eat a full cart of hay. It would take a cow and a sheep \(60\) days, but a sheep and a goat would need \(90\) days. How many days would it take for all three animals to eat all the hay?

Anna and Beth played rock paper scissors ten times. Rock beat scissors, scissors beat paper and paper beat rock. Anna used rock three times, scissors six times and paper once. Beth used rock twice, scissors four times and paper four times. None of the ten games was a tie. Who won more games?

Let \(a,b,c >0\) be positive real numbers with \(abc \leq 1\). Prove that \[\frac{a}{c} + \frac{b}{a} + \frac{c}{b} \geq a+b+c.\]

Let \(a,b,c >0\) be positive real numbers. Prove that \[(1+a)(1+b)(1+c)\geq 8\sqrt{abc}.\]

For a natural number \(n\) prove that \(n! \leq (\frac{n+1}{2})^n\), where \(n!\) is the factorial \(1\times 2\times 3\times ... \times n\).

Prove the \(AM-GM\) inequality for \(n=2\). Namely for two non-negative real numbers \(a\) and \(b\) we have \(2\sqrt{ab} \leq a+b\).

Prove the Cauchy-Schwartz inequality: for a natural number \(n\) and real numbers \(a_1\), \(a_2\), ..., \(a_n\) and \(b_1\), \(b_2\), ..., \(b_n\) we have \[(a_1b_1 + a_2b_2 + ... + a_nb_n)^2 \leq (a_1^2+a_2^2+...+a_n^2)(b_1^2+b_2^2+...+b_n^2).\]

Prove the \(GM-HM\) inequality for positive real numbers \(a_1\), \(a_2\), ..., \(a_n\): \[\sqrt[n]{a_1a_2...a_n} \geq \frac{n}{\frac{1}{a_1} + ... \frac{1}{a_n}}.\]

From IMO 1999. Let \(n\geq 2\) be an integer. Determine the least possible constant \(C\) such that the inequality \[\sum_{1\leq i<j\leq n} x_ix_j(x_i^2 + x_j^2) \leq C(\sum_{1\leq i\leq n}x_i)^4\] holds for all non-negative real numbers \(x_i\). For this constant \(C\) find out when the equality holds.