Problems

Age
Difficulty
Found: 3058

Let \(\triangle ABC\) be a triangle and \(D\) be a point on the edge \(BC\) so that the segment \(AD\) bisects the angle \(\angle BAC\). Show that \(\frac{|AB|}{|BD|}=\frac{|AC|}{|CD|}\).

Proposed by USA for IMO 1993. For positive real numbers \(a,b,c,d\) prove that \[\frac{a}{b+2c+3d} + \frac{b}{c+2d+3a} + \frac{c}{d+2a+3b} + \frac{d}{a+2b+3c} \geq \frac{2}{3}.\]

Prove the \(AM-GM\) inequality for positive real numbers \(a_1\), \(a_2\), ..., \(a_n\): \[\frac{a_1+a_2+...+a_n}{n}\geq \sqrt[n]{a_1a_2...a_n}.\]

For non-negative real numbers \(a,b,c\) prove that \[a^3+b^3+c^3 \geq \frac{(a+b+c)(a^2+b^2+c^2)}{3}\geq a^2b+b^2c+c^2a.\]

Prove Nesbitt’s inequality, which states that for positive real numbers \(a,b,c\) we have \[\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\geq \frac{3}{2}.\]

Due to Paul Erdős. Each of the positive integers \(a_1\), \(a_2\), ..., \(a_n\) is less than \(1951\). The least common multiple of any two of these integers is greater than \(1951\). Prove that \[\frac{1}{a_1} + ... + \frac{1}{a_n} < 1+ \frac{n}{1951}.\]

Show that if \(1+2+\dots+n = \frac{n(n+1)}{2}\), then \(1+2+\dots+(n+1) = \frac{(n+1)((n+1)+1)}{2}\).

Show that \(1+2+\dots+n = \frac{n(n+1)}{2}\) for every natural number \(n\).

Show that if \(1+2^1+2^2+\dots+2^{10} = 2^{11} - 1\), then \(1+2^1+2^2+\dots+2^{11} = 2^{12} - 1\).

Show that \(1+2^1+2^2+\dots+2^n = 2^{n+1} - 1\) for every natural number \(n\).