Problems

Age
Difficulty
Found: 2449

101 random points are chosen inside a unit square, including on the edges of the square, so that no three points lie on the same straight line. Prove that there exist some triangles with vertices on these points, whose area does not exceed 0.01.

In six baskets there are pears, plums and apples. The number of plums in each basket is equal to the total number of apples in the other baskets. The number of apples in each basket is equal to the total number of pears in the other baskets. Prove that the total number of fruits is divisible by 31.

The function \(f (x)\) is defined on the positive real \(x\) and takes only positive values. It is known that \(f (1) + f (2) = 10\) and \(f(a+b) = f(a) + f(b) + 2\sqrt{f(a)f(b)}\) for any \(a\) and \(b\). Find \(f (2^{2011})\).

On a chessboard, \(n\) white and \(n\) black rooks are arranged so that the rooks of different colours cannot capture one another. Find the greatest possible value of \(n\).

Suppose that: \[\frac{x+y}{x-y}+\frac{x-y}{x+y} =3.\] Find the value of the following expression: \[\frac{x^2 +y^2}{x^2-y^2} + \frac{x^2 -y^2}{x^2+y^2}.\]

Pinocchio correctly solved a problem, but stained his notebook. \[(\bullet \bullet + \bullet \bullet+1)\times \bullet= \bullet \bullet \bullet\]

Under each blot lies the same number, which is not equal to zero. Find this number.

Seven coins are arranged in a circle. It is known that some four of them, lying in succession, are fake and that every counterfeit coin is lighter than a real one. Explain how to find two counterfeit coins from one weighing on scales without any weights. (All counterfeit coins weigh the same.)

Four people discussed the answer to a task.

Harry said: “This is the number 9”.

Ben: “This is a prime number.”

Katie: “This is an even number.”

And Natasha said that this number is divisible by 15.

One boy and one girl answered correctly, and the other two made a mistake. What is the actual answer to the question?