Problems

Age
Difficulty
Found: 2449

Peter recorded an example of an addition on a board, after which he replaced some digits with letters, with the same figures being replaced with the same letters, and different figures with different letters. He did it such that he was left with the sum: \(CROSS + 2011 = START\). Prove that Peter made a mistake.

Four numbers (from 1 to 9) have been used to create two numbers with four-digits each. These two numbers are the maximum and minimum numbers, respectively, possible. The sum of these two numbers is equal to 11990. What could the two numbers be?

After a circus came back from its country-wide tour, relatives of the animal tamer asked him questions about which animals travelled with the circus.

“Where there tigers?”

“Yes, in fact, there were seven times more tigers than non-tigers.”

“What about monkeys?”

“Yes, there were seven times less monkeys than non-monkeys.”

“Where there any lions?”

What is the answer he gave to this last question?

There are 100 boxes numbered from 1 to 100. In one box there is a prize and the presenter knows where the prize is. The spectator can send the presented a pack of notes with questions that require a “yes” or “no” answer. The presenter mixes the notes in a bag and, without reading out the questions aloud, honestly answers all of them. What is the smallest number of notes you need to send to know for sure where the prize is?

Solve this equation: \[(x+2010)(x+2011)(x+2012)=(x+2011)(x+2012)(x+2013).\]

There are a thousand tickets with numbers 000, 001, ..., 999 and a hundred boxes with the numbers 00, 01, ..., 99. A ticket is allowed to be dropped into a box if the number of the box can be obtained from the ticket number by erasing one of the digits. Is it possible to arrange all of the tickets into 50 boxes?

The nonzero numbers \(a\), \(b\), \(c\) are such that every two of the three equations \(ax^{11} + bx^4 + c = 0\), \(bx^{11} + cx^4 + a = 0\), \(cx^{11} + ax^4 + b = 0\) have a common root. Prove that all three equations have a common root.

2011 numbers are written on a blackboard. It turns out that the sum of any of these written numbers is also one of the written numbers. What is the minimum number of zeroes within this set of 2011 numbers?

Does there exist a real number \({\alpha}\) such that the number \(\cos {\alpha}\) is irrational, and all the numbers \(\cos 2{\alpha}\), \(\cos 3{\alpha}\), \(\cos 4{\alpha}\), \(\cos 5{\alpha}\) are rational?