Problems

Age
Difficulty
Found: 584

The numbers 1 through 12 are written on a board. You can erase any two of these numbers (call them \(a\) and \(b\)) and replace them with the number \(a+b-1\). After 11 such operations, there will be just one number left. What could this number be?

If a magician puts 1 dove into his hat, he pulls out 2 rabbits and 2 flowers from it. If the magician puts 1 rabbit in, he pulls out 2 flowers and 2 doves. If he puts 1 flower in, he pulls out 1 rabbit and 3 doves. The magician starts with 1 rabbit. Could he end up with the same number of rabbits, doves, and flowers after performing his hat trick several times?

There are real numbers written on each field of a \(m \times n\) chessboard. Some of them are negative, some are positive. In one move we can multiply all the numbers in one column or row by \(-1\). Is that always possible to obtain a chessboard where sums of numbers in each row and column are nonnegative?

A \(7 \times 7\) square was tiled using \(1 \times 3\) rectangular blocks. One of the squares has not been covered. Which one can it be?

Tom found a large, old clock face and put 12 sweets on the number 12. Then he started to play a game with himself. In each move he moves one sweet to the next number clockwise, and some other to the next number anticlockwise. Is it possible that after finite number of steps there is exactly 1 of the sweets on each number?

Inside a square with side 1 there are several circles, the sum of the radii of which is 0.51. Prove that there is a line that is parallel to one side of the square and that intersects at least 2 circles.

What is the maximum number of kings, that cannot capture each other, which can be placed on a chessboard of size \(8 \times 8\) cells?

On a table, there are five coins lying in a row: the middle one lies with a head facing upwards, and the rest lie with the tails side up. It is allowed to simultaneously flip three adjacent coins. Is it possible to make all five coins positioned with the heads side facing upwards with the help of several such overturns?

Know-it-all came to visit the twin brothers Screw and Nut, knowing that one of them never speaks the truth, and asked one of them: “Are you Screw?”. “Yes,” he replied. When Know-it-all asked the second brother the same question, he received an equally clear answer and immediately determined who was who.

Who was called Screw?