Problems

Age
Difficulty
Found: 578

Natural numbers from 1 to 200 are divided into 50 sets. Prove that in one of the sets there are three numbers that are the lengths of the sides of a triangle.

For what natural numbers \(n\) are there positive rational but not whole numbers \(a\) and \(b\), such that both \(a + b\) and \(a^n + b^n\) are integers?

Peter has some coins in his pocket. If Peter pulls \(3\) coins from his pocket, without looking, there will always be a £1 coin among them. If Peter pulls \(4\) coins from his pocket, without looking, there will always be a £2 coin among them. Peter pulls \(5\) coins from his pocket. Identify these coins.

Inside a square with side 1 there are several circles, the sum of the radii of which is 0.51. Prove that there is a line that is parallel to one side of the square and that intersects at least 2 circles.

The base of the pyramid is a square. The height of the pyramid crosses the diagonal of the base. Find the largest volume of such a pyramid if the perimeter of the diagonal section containing the height of the pyramid is 5.

A cinema contains 7 rows each with 10 seats. A group of 50 children went to see the morning screening of a film, and returned for the evening screening. Prove that there will be two children who sat in the same row for both the morning and the evening screening.

The volume of the regular quadrangular pyramid \(SABCD\) is equal to \(V\). The height \(SP\) of the pyramid is the edge of the regular tetrahedron \(SPQR\), the plane of the face \(PQR\) which is perpendicular to the edge \(SC\). Find the volume of the common part of these pyramids.

The height \(SO\) of a regular quadrilateral pyramid \(SABCD\) forms an angle \(\alpha\) with a side edge and the volume of this pyramid is equal to \(V\). The vertex of the second regular quadrangular pyramid is at the point \(S\), the centre of the base is at the point \(C\), and one of the vertices of the base lies on the line \(SO\). Find the volume of the common part of these pyramids.