Problems

Age
Difficulty
Found: 578

a) Using geometric considerations, prove that the base and the side of an isosceles triangle with an angle of \(36^{\circ}\) at the vertex are incommensurable.

b) Invent a geometric proof of the irrationality of \(\sqrt{2}\).

Old calculator I.

a) Suppose that we want to find \(\sqrt[3]{x}\) (\(x> 0\)) on a calculator that can find \(\sqrt{x}\) in addition to four ordinary arithmetic operations. Consider the following algorithm. A sequence of numbers \(\{y_n\}\) is constructed, in which \(y_0\) is an arbitrary positive number, for example, \(y_0 = \sqrt{\sqrt{x}}\), and the remaining elements are defined by \(y_{n + 1} = \sqrt{\sqrt{x y_n}}\) (\(n \geq 0\)).

Prove that \(\lim\limits_{n\to\infty} y_n = \sqrt[3]{x}\).

b) Construct a similar algorithm to calculate the fifth root.

An iterative polyline serves as a geometric interpretation of the iteration process. To construct it, on the \(Oxy\) plane, the graph of the function \(f (x)\) is drawn and the bisector of the coordinate angle is drawn, as is the straight line \(y = x\). Then on the graph of the function the points \[A_0 (x_0, f (x_0)), A_1 (x_1, f (x_1)), \dots, A_n (x_n, f (x_n)), \dots\] are noted and on the bisector of the coordinate angle – the points \[B_0 (x_0, x_0), B_1 (x_1, x_1), \dots , B_n (x_n, x_n), \dots.\] The polygonal line \(B_0A_0B_1A_1 \dots B_nA_n \dots\) is called iterative.

Construct an iterative polyline from the following information:

a) \(f (x) = 1 + x/2\), \(x_0 = 0\), \(x_0 = 8\);

b) \(f (x) = 1/x\), \(x_0 = 2\);

c) \(f (x) = 2x - 1\), \(x_0 = 0\), \(x_0 = 1{,}125\);

d) \(f (x) = - 3x/2 + 6\), \(x_0 = 5/2\);

e) \(f (x) = x^2 + 3x - 3\), \(x_0 = 1\), \(x_0 = 0{,}99\), \(x_0 = 1{,}01\);

f) \(f (x) = \sqrt{1 + x}\), \(x_0 = 0\), \(x_0 = 8\);

g) \(f (x) = x^3/3 - 5x^2/x + 25x/6 + 3\), \(x_0 = 3\).

Prove that for a monotonically increasing function \(f (x)\) the equations \(x = f (f (x))\) and \(x = f (x)\) are equivalent.

The Newton method (see Problem 61328) does not always allow us to approach the root of the equation \(f(x) = 0\). Find the initial condition \(x_0\) for the polynomial \(f(x) = x (x - 1)(x + 1)\) such that \(f(x_0) \neq x_0\) and \(x_2 = x_0\).

The sequence of numbers \(a_1, a_2, a_3, \dots\) is given by the following conditions \(a_1 = 1\), \(a_{n + 1} = a_n + \frac {1} {a_n^2}\) (\(n \geq 0\)).

Prove that

a) this sequence is unbounded;

b) \(a_{9000} > 30\);

c) find the limit \(\lim \limits_ {n \to \infty} \frac {a_n} {\sqrt [3] n}\).

Definition. The sequence of numbers \(a_0, a_1, \dots , a_n, \dots\), which, with the given \(p\) and \(q\), satisfies the relation \(a_{n + 2} = pa_{n + 1} + qa_n\) (\(n = 0,1,2, \dots\)) is called a linear recurrent sequence of the second order.

The equation \[x^2-px-q = 0\] is called a characteristic equation of the sequence \(\{a_n\}\).

Prove that, if the numbers \(a_0\), \(a_1\) are fixed, then all of the other terms of the sequence \(\{a_n\}\) are uniquely determined.

Find the largest number of colours in which you can paint the edges of a cube (each edge with one colour) so that for each pair of colours there are two adjacent edges coloured in these colours. Edges are considered to be adjacent if they have a common vertex.