Problems

Age
Difficulty
Found: 584

Three players are playing knockout table tennis – that is, the player who loses a game swaps places with the player who did not take part in that game and the winner stays on. In total Andrew played 10 games, Ben played 15, and Charlotte played 17. Which player lost the second game played?

On a ring road at regular intervals there are 25 posts, each with a policeman. The police are numbered in some order from 1 to 25. It is required that they cross the road so that there is a policeman on each post, but so that number 2 was clockwise behind number 1, number 3 was clockwise behind number 2, and so on. Prove that if you organised the transition so that the total distance travelled was the smallest, then one of the policemen will remain at his original post.

Each day, from Monday to Friday, an old man went to the sea and threw in a net to catch fish. On each day the man caught no more fish than on the previous day. In total over the 5 days the man caught exactly 100 fish. What is the minimum total number of fish the man could have caught on Monday, Wednesday, and Friday.

The numbers \(1, 2, 3,\dots , 10\) are written around a circle in a particular order. Peter calculated the sum of each of the 10 possible groups of three adjacent numbers around the circle and wrote down the smallest value he had calculated. What is the largest possible value he could have written down?

In a group of six people, any five can sit down at a round table so that every two neighbours know each other.

Prove that the entire group can be seated at the round table so that every two neighbours will know each other.

Author: I.I. Bogdanov

Peter wants to write down all of the possible sequences of 100 natural numbers, in each of which there is at least one 3, and any two neighbouring terms differ by no more than 1. How many sequences will he have to write out?

Author: I.I. Bogdanov

Peter wants to write down all of the possible sequences of 100 natural numbers, in each of which there is at least one 4 or 5, and any two neighbouring terms differ by no more than 2. How many sequences will he have to write out?

A carpet has a square shape with side 275 cm. A moth has eaten 4 holes through it. Will it always be possible to cut a square section of side 1 m out of the carpet, so that the section does not contain any holes? Treat the holes as points.

A pack of 36 cards was placed in front of a psychic face down. He calls the suit of the top card, after which the card is opened, shown to him and put aside. After this, the psychic calls out the suit of the next card, etc. The task of the psychic is to guess the suit as many times as possible. However, the card backs are in fact asymmetrical, and the psychic can see in which of the two positions the top card lies. The deck is prepared by a bribed employee. The clerk knows the order of the cards in the deck, and although he cannot change it, he can prompt the psychic by having the card backs arranged in a way according to a specific arrangement. Can the psychic, with the help of such a clue, ensure the guessing of the suit of

a) more than half of the cards;

b) no less than 20 cards?

Every day, James bakes a square cake size \(3\times3\). Jack immediately cuts out for himself four square pieces of size \(1\times1\) with sides parallel to the sides of the cake (not necessarily along the \(3\times3\) grid lines). After that, Sarah cuts out from the rest of the cake a square piece with sides, also parallel to the sides of the cake. What is the largest piece of cake that Sarah can count on, regardless of Jack’s actions?