The product of two positive numbers \(a\) and \(b\) is greater than \(100\). Prove that at least one of the numbers is greater than \(10\).
Write the contrapositive of the statement “If it is sunny outside, then I put on sunscreen and wear sunglasses”
What is the contrapositive of the statement: “If the temperature is above \(40^\circ\)C or below \(-10^\circ\)C, then it is not safe to go outside."
Some lines are drawn on a large sheet of paper so that all of them meet at one point. Show that if there are at least \(10\) lines, then there must be two lines whose angle between them is at most \(18^\circ\).
A whole number \(n\) has the property that when you multiply it by \(3\) and then add \(2\), the result is odd. Use proof by contrapositive to show that \(n\) itself must be odd.
Find the contrapositive of the statement: “If in every school there is a class with at least \(20\) students, then there is a school with at least \(10\) students".
An ordered triple of numbers is given. It is permitted to perform the following operation on the triple: to change two of them, say \(a\) and \(b\), to \(\frac{a+b}{\sqrt{2}}\) and \(\frac{a-b}{\sqrt{2}}\). Is it possible to obtain the triple \((1,\sqrt{2},1+\sqrt{2})\) from the triple \((2,\sqrt{2},\frac{1}{\sqrt{2}})\) using this operation?
(USAMO 1997) Let \(p_1, p_2, p_3,\dots\) be the prime numbers listed in increasing order, and let \(0 < x_0 < 1\) be a real number between 0 and 1. For each positive integer \(k\), define \[x_k = \begin{cases} 0 & \text{ if } x_{k-1} = 0 \\ \left\{\frac{p_k}{x_{k-1}} \right\} & \text{ if } x_{k-1} \neq 0 \end{cases}\] where \(\{x\}\) denotes the fractional part of \(x\). For example, \(\{2.53\} = 0.53\) and \(\{3.1415926...\} = 0.1415926...\). Find, with proof, all \(x_0\) satisfying \(0 <x_0 <1\) for which the sequence \(x_0, x_1, x_2,\dots\) eventually becomes 0.
Take the number \(2026^{2026}\). We remove the leading digit and add it to the remaining number. This action is repeated until there are exactly \(10\) digits left. Show that there must be two digits that are the same in the end.