Problems

Age
Difficulty
Found: 338

Uncle Jack, the cat Whiskers, Spot and postman Pat are sitting on a bench. If Spot, sitting to the right of everyone, sits between Uncle Jack and the cat, then the cat will be at the extreme left. In what order do they sit?

When Harvey was asked to come up with a problem for the mathematical Olympiad in Sunny City, he wrote a rebus (see the drawing). Can it be solved? (Different letters must match different numbers).

image

In the rebus below, replace the letters with numbers such that the same numbers are represented with the same letter. The asterisks can be replaced with any numbers such that the equations hold.

image

An explanation of the notation used: the unknown numbers in the third and fourth rows are the results of multiplying 1995 by each digit of the number in the second row, respectively. These third and fourth rows are added together to get the total result of the multiplication \(1995 \times ***\), which is the number in the fifth row. This is an example of a “long multiplication table”.

Alex laid out an example of an addition of numbers from cards with numbers on them and then swapped two cards. As you can see, the equality has been violated. Which cards did Alex rearrange?

image

In the line of numbers and signs \({}* 1 * 2 * 4 * 8 * 16 * 32 * 64 = 27\) position the signs “\(+\)” or “\(-\)” instead of the signs “\(*\)”, so that the equality becomes true.

The code of lock is a two-digit number. Ben forgot the code, but he remembers that the sum of the digits of this number, combined with their product, is equal to the number itself. Write all possible code options so that Ben could open the lock quickly.

Jessica, Nicole and Alex received 6 coins between them: 3 gold coins and 3 silver coins. Each of them received 2 coins. Jessica doesn’t know which coins the others received but only which coins she has. Think of a question which Jessica can answer with either “yes”, “no” or “I don’t know” such that from the answer you can know which coins Jessica has.

Find the smallest four-digit number \(CEEM\) for which there exists a solution to the rebus \(MN + PORG = CEEM\). (The same letters correspond to the same numbers, different – different.)