Problems

Age
Difficulty
Found: 338

On the first day of school, in all three of the first year classes (1A, 1B, 1C), there were three lessons: Maths, French and Biology. Two classes cannot have the same lesson at the same time. 1B’s first lesson was Maths. The Biology teacher praised the students in 1B: “You have even better marks than 1A”. 1A’s second lesson was not French. Which class’s last lesson was Biology?

11 scouts are working on 5 different badges. Prove that there will be two scouts \(A\) and \(B\), such that every badge that \(A\) is working towards is also being worked towards by \(B\).

Imogen’s cat always sneezes before it rains. Today the cat sneezed. “So, it will rain” thinks Imogen. Is she right?

Three tortoises crawl along the road in a line. “Two tortoises are crawling behind me,” says the first. “One tortoise is crawling behind me, and one tortoise is crawling in front of me,” says the second. “Two tortoises are crawling in front of me, and one tortoise is crawling behind me,” says the third. How can this be?

Three wise men ride on a train. Suddenly the train drives into a tunnel, and after the lights come on, each of the men sees that the faces of his colleagues are stained with soot that has flown through the car window. All three begin to laugh at their stained companions, but suddenly the most intelligent man guesses that his face is also stained. How did he do it?

In each cell of a \(25 \times 25\) square table, one of the numbers 1, 2, 3, ..., 25 is written. In cells, that are symmetric relative to the main diagonal, equal numbers are written. There are no two equal numbers in any row and in any column. Prove that the numbers on the main diagonal are pairwise distinct.

Numbers from 1 to 20 are written in a row. Players take turns placing pluses and minuses between these numbers. After all of the gaps are filled, the result is calculated. If it is even, then the first player wins, if it is odd, then the second player wins. Who won?

a) Two in turn put bishops in the cells of a chessboard. The next move must beat at least one empty cell. The bishop also beats the cell in which it is located. The player who loses is the one who cannot make a move.

b) Repeat the same, but with rooks.

There are two piles of sweets: one with 20 sweets and the other with 21 sweets. In one go, one of the piles needs to be eaten, and the second pile is divided into two not necessarily equal piles. The player that cannot make a move loses. Which player wins and which one loses?

The game begins with the number 0. In one go, it is allowed to add to the actual number any natural number from 1 to 9. The winner is the one who gets the number 100.