In each cell of a board of size \(5\times5\) a cross or a nought is placed, and no three crosses are positioned in a row, either horizontally, vertically or diagonally. What is the largest number of crosses on the board?
An after school club is attended by 4 boys from class 7A, and four from class 7B. Of those who attended three were named Ben, three were named Will, and two were named Tom.
Is it possible for it to be the case that each boy had at least one namesake classmate who attended the club?
Three cyclists travel in one direction along a circular track that is 300 meters long. Each of them moves with a constant speed, with all of their speeds being different. A photographer will be able to make a successful photograph of the cyclists, if all of them are on some part of the track which has a length of \(d\) meters. What is the smallest value of \(d\) for which the photographer will be able to make a successful photograph sooner or later?
A grasshopper can make jumps of 8, 9 and 10 cells in any direction on a strip of \(n\) cells. We will call the natural number \(n\) jumpable if the grasshopper can, starting from some cell, bypass the entire strip, having visited each cell exactly once. Find at least one \(n > 50\) that is not jumpable.
One hundred gnomes weighing each 1, 2, 3, ..., 100 pounds, gathered on the left bank of a river. They cannot swim, but on the same shore is a rowing boat with a carrying capacity of 100 pounds. Because of the current, it’s hard to swim back, so each gnome has enough power to row from the right bank to the left one no more than once (it’s enough for any one of the gnomes to row in the boat, the rower does not change during one voyage). Will all gnomes cross to the right bank?
Author: L.N. Vaserstein
For any natural numbers \(a_1, a_2, \dots , a_m\), no two of which are equal to each other and none of which is divisible by the square of a natural number greater than one, and also for any integers and non-zero integers \(b_1, b_2, \dots , b_m\) the sum is not zero. Prove this.
Prove that for any positive integer \(n\), it is always possible to find a number, consisting of the digits \(1\) and \(2,\) that is divisible by \(2^n\). (For example, \(2\) is divisible by \(2\), \(12\) is divisible by \(4,\) \(112\) is divisible by \(8,\) \(2112\) is divisible by \(16\) and so on...).
A sequence of natural numbers \(a_1 < a_2 < a_3 < \dots < a_n < \dots\) is such that each natural number is either a term in the sequence, can be expressed as the sum of two terms in the sequence, or perhaps the same term twice. Prove that \(a_n \leq n^2\) for any \(n=1, 2, 3,\dots\)
Out of the given numbers 1, 2, 3, ..., 1000, find the largest number \(m\) that has this property: no matter which \(m\) of these numbers you delete, among the remaining \(1000 - m\) numbers there are two, of which one is divisible by the other.
An infinite sequence of digits is given. Prove that for any natural number \(n\) that is relatively prime with a number 10, you can choose a group of consecutive digits, which when written as a sequence of digits, gives a resulting number written by these digits which is divisible by \(n\).