4 points \(a, b, c, d\) lie on the segment \([0, 1]\) of the number line. Prove that there will be a point \(x\), lying in the segment \([0, 1]\), that satisfies \[\frac{1}{ | x-a |}+\frac{1}{ | x-b |}+\frac{1}{ | x-c |}+\frac{1}{ | x-d |} < 40.\]
Some points with integer co-ordinates are marked on a Cartesian plane. It is known that no four points lie on the same circle. Prove that there will be a circle of radius 1995 in the plane, which does not contain a single marked point.
Some real numbers \(a_1, a_2, a_3,\dots ,a _{2022}\) are written in a row. Prove that it is possible to pick one or several adjacent numbers, so that their sum is less than 0.001 away from a whole number.
In a regular shape with 25 vertices, all the diagonals are drawn.
Prove that there are no nine diagonals passing through one interior point of the shape.
2022 dollars were placed into some wallets and the wallets were placed in some pockets. It is known that there are more wallets in total than there are dollars in any pocket. Is it true that there are more pockets than there are dollars in one of the wallets? You are not allowed to place wallets one inside the other.
In a basket, there are 30 mushrooms. Among any 12 of them there is at least one brown one, and among any 20 mushrooms, there is at least one chanterelle. How many brown mushrooms and how many chanterelles are there in the basket?
100 cars are parked along the right hand side of a road. Among them there are 30 red, 20 yellow, and 20 pink Mercedes. It is known that no two Mercedes of different colours are parked next to one another. Prove that there must be three Mercedes cars parked next to one another of the same colour somewhere along the road.
20 birds fly into a photographer’s studio – 8 starlings, 7 wagtails and 5 woodpeckers. Each time the photographer presses the shutter to take a photograph, one of the birds flies away and doesn’t come back. How many photographs can the photographer take to be sure that at the end there will be no fewer than 4 birds of one species and no less than 3 of another species remaining in the studio.
There are 8 students in an online chess club. Show that some two of them were born on the same day of the week.
Ramesh has an infinite number of red, blue and green socks in his drawer. How many socks does he need to pick from the drawer at random to guarantee he will have at least one pair of socks of one colour?