Problems

Age
Difficulty
Found: 44

Several Top Secret Objects are connected by an underground railway in such a way that each Object is directly connected to no more than three others and from each Object one can reach any other Object by going and by changing no more than once. What is the maximum number of Top Secret Objects?

There is a counter on the chessboard. Two in turn move the counter to an adjacent on one side cell. It is forbidden to put a counter on a cell, which it has already visited. The one who can not make the next turn loses. Who wins with the right strategy?

a) In Wonderland, there are three cities \(A\), \(B\) and \(C\). 6 roads lead from city \(A\) to city \(B\), and 4 roads lead from city \(B\) to city \(C\). How many ways can you travel from \(A\) to \(C\)?

b) In Wonderland, another city \(D\) was built as well as several new roads – two from \(A\) to \(D\) and two from \(D\) to \(C\). In how many ways can you now get from city \(A\) to city \(C\)?

There are 13 weights. It is known that any 12 of them could be placed in 2 scale cups with 6 weights in each cup in such a way that balance will be held.

Prove the mass of all the weights is the same, if it is known that:

a) the mass of each weight in grams is an integer;

b) the mass of each weight in grams is a rational number;

c) the mass of each weight could be any real (not negative) number.

Can you cover a \(10 \times 10\) board using only \(T\)-shaped tetrominos?

image

There are \(100\) people standing in line, and one of them is Arthur. Everyone in the line is either a knight, who always tells the truth, or a liar who always lies. Everyone except Arthur said, "There are exactly two liars between Arthur and me." How many liars are there in this line, if it is known that Arthur is a knight?

There is a scout group where some of the members know each other. Amongst any four members there is at least one of them who knows the other three. Prove that there is at least one member who knows the entirety of the scout group.

We wish to paint the \(15\) segments in the picture below in three colours. We want it such that no two segments of the same colour have a common end. For example, you cannot have both \(AB\) and \(BC\) blue since they share the end \(B\). Is such a painting possible?

image

A parliament has 650 members. In this parliament there is only one house and every member has at most three enemies. We wish to split this parliament into two separate houses in such a way that each member will have at most one enemy in the same house as them. We assume that hard feelings among members of parliament are mutual, namely if \(A\) recognises \(B\) as their enemy, then \(B\) also recognises \(A\) as their enemy.

Is this splitting possible?

Let \(A=\{1,2,3\}\) and \(B=\{2,4\}\) be two sets containing natural numbers. Find the sets: \(A\cup B\), \(A\cap B\), \(A-B\), \(B-A\).