In the language of the Ancient Tribe, the alphabet consists of only two letters: M and O. Two words are synonyms, if one can be obtained by from the other by a) the deletion of the letters MO or OOMM, b) adding in any place the letter combination of OM. Are the words OMM and MOO synonyms in the language of the Ancient Tribe?
15 points are placed inside a \(4 \times 4\) square. Prove that it is possible to cut a unit square out of the \(4 \times 4\) square that does not contain any points.
On an island, there are knights who always tell the truth, and liars who always lie. What question would you need to ask the islander to find out if he has a crocodile at home?
An investigation is being conducted into the case of a stolen mustang. There are three suspects – Bill, Joe and Sam. At the trial, Sam said that the mustang was stolen by Joe. Bill and Joe also testified, but what they said, no one remembered, and all the records were lost. In the course of the trial it became clear that only one of the defendants had stolen the Mustang, and that only he had given a truthful testimony. So who stole the mustang?
True or false? Prince Charming went to find Cinderella. He reached the crossroads and started to daydream. Suddenly he sees the Big Bad Wolf. And everyone knows that this Big Bad Wolf on one day answers every question truthfully, and a day later he lies, he proceeds in such a manner on alternate days. Prince Charming can ask the Big Bad Wolf exactly one question, after which it is necessary for him to choose which of the two roads to go on. What question can Prince Charming ask the Big Bad Wolf to find out for sure which of the roads leads to the Magic kingdom?
In a vase, there is a bouquet of 7 white and blue lilac branches. It is known that 1) at least one branch is white, 2) out of any two branches, at least one is blue. How many white branches and how many blue are there in the bouquet?
Given an endless piece of chequered paper with a cell side equal to one. The distance between two cells is the length of the shortest path parallel to cell lines from one cell to the other (it is considered the path of the center of a rook). What is the smallest number of colors to paint the board (each cell is painted with one color), so that two cells, located at a distance of 6, are always painted with different colors?
There are 68 coins, and it is known that any two coins differ in weight. With 100 weighings on a two-scales balance without weights, find the heaviest and lightest coin.
A cat tries to catch a mouse in labyrinths A, B, and C. The cat walks first, beginning with the node marked with the letter “K”. Then the mouse (from the node “M”) moves, then again the cat moves, etc. From any node the cat and mouse go to any adjacent node. If at some point the cat and mouse are in the same node, then the cat eats the mouse.
Can the cat catch the mouse in each of the cases A, B, C?
Two play a game on a chessboard \(8 \times 8\). The player who makes the first move puts a knight on the board. Then they take turns moving it (according to the usual rules), whilst you can not put the knight on a cell which he already visited. The loser is one who has nowhere to go. Who wins with the right strategy – the first player or his partner?