Problems

Age
Difficulty
Found: 354

A king divided his kingdom into 19 counties who are governed by 19 lords. Could it be that each lord’s county has one, five or nine neighbouring counties?

John, coming back from Disneyland, told me that there are seven islands on the enchanted lake, each of which is lead to by one, three or five bridges. Is it true that at least one of these bridges necessarily leads to the shore of the lake?

Prove that the number of people who have ever lived on Earth and who shook hands an odd number of times is even.

Is it possible to draw 9 segments on a plane so that each intersects exactly three others?

On a board there are written 10 units and 10 deuces. During a game, one is allowed to erase any two numbers and, if they are the same, write a deuce, and if they are different then they can write a one. If the last digit left on the board is a unit, then the first player won, if it is a deuce then the second player wins.

Prove that: \[a_1 a_2 a_3 \cdots a_{n-1}a_n \times 10^3 \equiv a_{n-1} a_n \times 10^3 \pmod4,\] where \(n\) is a natural number and \(a_i\) for \(i=1,2,\ldots, n\) are the digits of some number.

A pawn stands on one of the squares of an endless in both directions chequered strip of paper. It can be shifted by \(m\) squares to the right or by \(n\) squares to the left. For which \(m\) and \(n\) can it move to the next cell to the right?

How many different four-digit numbers, divisible by 4, can be made up of the digits 1, 2, 3 and 4,

a) if each number can occur only once?

b) if each number can occur several times?