Problems

Age
Difficulty
Found: 354

All integers from 1 to \(2n\) are written in a row. Then, to each number, the number of its place in the row is added, that is, to the first number 1 is added, to the second – 2, and so on.

Prove that among the sums obtained there are at least two that give the same remainder when divided by \(2n\).

The numbers \(1, 2, 3, \dots , 99\) are written onto 99 blank cards in order. The cards are then shuffled and then spread in a row face down. The numbers \(1, 2, 3, \dots, 99\) are once more written onto in the blank side of the cards in order. For each card the numbers written on it are then added together. The 99 resulting summations are then multiplied together. Prove that the result will be an even number.

The sum of 100 natural numbers, each of which is no greater than 100, is equal to 200. Prove that it is possible to pick some of these numbers so that their sum is equal to 100.

The product of 1986 natural numbers has exactly 1985 different prime factors. Prove that either one of these natural numbers, or the product of several of them, is the square of a natural number.

The product of a group of 48 natural numbers has exactly 10 prime factors. Prove that the product of some four of the numbers in the group will always give a square number.

7 different digits are given. Prove that for any natural number \(n\) there is a pair of these digits, the sum of which ends in the same digit as the number.

On an island there are 1,234 residents, each of whom is either a knight (who always tells the truth) or a liar (who always lies). One day, all of the inhabitants of the island were broken up into pairs, and each one said: “He is a knight!" or “He is a liar!" about his partner. Could it eventually turn out to be that the number of “He is a knight!" and “He is a liar!" phrases is the same?