Problems

Age
Difficulty
Found: 523

Prove that in a game of noughts and crosses on a \(3\times 3\) grid, if the first player uses the right strategy then the second player cannot win.

a) There are 10 coins. It is known that one of them is fake (by weight, it is heavier than the real ones). How can you determine the counterfeit coin with three weighings on scales without weights?

b) How can you determine the counterfeit coin with three weighings, if there are 27 coins?

Vincent makes small weights. He made 4 weights which should have masses (in grams) of 1, 3, 4 and 7, respectively. However, he made a mistake and one of these weights has the wrong mass. By weighing them twice using balance scales (without the use of weights other than those mentioned) can he find which weight has the wrong mass?

There are some coins on a table. One of these coins is fake (has a different weight than a real coin). By weighing them twice using balance scales, determine whether the fake coin is lighter or heavier than a real coin (you don’t need to find the fake coin) if the number of coins is: a) 100; b) 99; c) 98?

100 fare evaders want to take a train, consisting of 12 coaches, from the first to the 76th station. They know that at the first station two ticket inspectors will board two coaches. After the 4th station, in the time between each station, one of the ticket inspectors will cross to a neighbouring coach. The ticket inspectors take turns to do this. A fare evader can see a ticket inspector only if the ticket inspector is in the next coach or the next but one coach. At each station each fare evader has time to run along the platform the length of no more than three coaches – for example at a station a fare evader in the 7th coach can run to any coach between the 4th and 10th inclusive and board it. What is the largest number of fare evaders that can travel their entire journey without ever ending up in the same coach as one of the ticket inspectors, no matter how the ticket inspectors choose to move? The fare evaders have no information about the ticket inspectors beyond that which is given here, and they agree their strategy before boarding.

Several guests are sitting at a round table. Some of them are familiar with each other; mutually acquainted. All the acquaintances of any guest (counting himself) sit around the table at regular intervals. (For another person, these gaps may be different.) It is known that any two have at least one common acquaintance. Prove that all guests are familiar with each other.

On the selection to the government of the planet of liars and truth tellers \(12\) candidates gave a speech about themselves. After a while, one said: “before me only once did someone lie” Another said: “And now-twice.” “And now – thrice” – said the third, and so on until the \(12\)th, who said: “And now \(12\) times someone has lied.” Then the presenter interrupted the discussion. It turned out that at least one candidate correctly counted how many times someone had lied before him. So how many times have the candidates lied?

Two people play the following game. Each player in turn rubs out 9 numbers (at his choice) from the sequence \(1, 2, \dots , 100, 101\). After eleven such deletions, 2 numbers will remain. The first player is awarded so many points, as is the difference between these remaining numbers. Prove that the first player can always score at least 55 points, no matter how played the second.

27 coins are given, of which one is a fake, and it is known that a counterfeit coin is lighter than a real one. How can the counterfeit coin be found from 3 weighings on the scales without weights?

A family went to the bridge at night. The dad can cross it in 1 minute, the mum in 2 minutes, the child in 5 minutes, and the grandmother in 10 minutes. They have one flashlight. The bridge only withstands two people. How can they cross the bridge in 17 minutes? (If two people cross, then they pass with the lower of the two speeds. They cannot pass along the bridge without a flashlight. They cannot shine the light from afar. They cannot carry anyone in their arms. They cannot throw the flashlight.)