Problems

Age
Difficulty
Found: 35

Pinocchio correctly solved a problem, but stained his notebook. \[(\bullet \bullet + \bullet \bullet+1)\times \bullet= \bullet \bullet \bullet\]

Under each blot lies the same number, which is not equal to zero. Find this number.

Four people discussed the answer to a task.

Harry said: “This is the number 9”.

Ben: “This is a prime number.”

Katie: “This is an even number.”

And Natasha said that this number is divisible by 15.

One boy and one girl answered correctly, and the other two made a mistake. What is the actual answer to the question?

Peter recorded an example of an addition on a board, after which he replaced some digits with letters, with the same figures being replaced with the same letters, and different figures with different letters. He did it such that he was left with the sum: \(CROSS + 2011 = START\). Prove that Peter made a mistake.

Four numbers (from 1 to 9) have been used to create two numbers with four-digits each. These two numbers are the maximum and minimum numbers, respectively, possible. The sum of these two numbers is equal to 11990. What could the two numbers be?

Let \(x\) be a natural number. Among the statements:

\(2x\) is more than 70;

\(x\) is less than 100;

\(3x\) is greater than 25;

\(x\) is not less than 10;

\(x\) is greater than 5;

three are true and two are false. What is \(x\)?

On an island there are 1,234 residents, each of whom is either a knight (who always tells the truth) or a liar (who always lies). One day, all of the inhabitants of the island were broken up into pairs, and each one said: “He is a knight!" or “He is a liar!" about his partner. Could it eventually turn out to be that the number of “He is a knight!" and “He is a liar!" phrases is the same?

Solving the problem: “What is the solution of the expression \(x^{2000} + x^{1999} + x^{1998} + 1000x^{1000} + 1000x^{999} + 1000x^{998} + 2000x^3 + 2000x^2 + 2000x + 3000\) (\(x\) is a real number) if \(x^2 + x + 1 = 0\)?”, Vasya got the answer of 3000. Is Vasya right?

The best student in the class, Katie, and the second-best, Mike, tried to find the minimum 5-digit number which consists of different even numbers. Katie found her number correctly, but Mike was mistaken. However, it turned out that the difference between Katie and Mike’s numbers was less than 100. What are Katie and Mike’s numbers?

The old shoemaker Carl sewed some boots and sent his son Hans to the market to sell them for £25. Two disabled people came to the boy’s market stall (one without a left leg, the other without a right one) and was asked to sell each of them a boot. Hans agreed and sold each boot for £12.50.

When the boy came home and told the whole story to his father, Carl decided that his son should have sold the boots to the disabled buyers for less – each for £10. He gave Hans £5 and ordered him to return £2.50 to each disabled buyer.

While the boy was looking for the disabled people at the market, he saw that someone was selling sweets and as could not resist, spent £3 on sweets. After that, he found the disabled buyers and gave them the remaining money – each got £1. Returning home, Hans realised how badly he had acted. He told his father and asked for forgiveness. The shoemaker was very angry and punished his son by sending him to his room.

Sitting in his room, Hans thought about the day’s events. It turned out that since he returned £1 to each buyer, they paid £11.50 for each boot: \(12.50 - 1 = 11.50\). So, the boots cost £23: \(2 \times 11.50 = 23\). And Hans spent £3 on sweets, therefore, it total, there were £26: \(23 + 3 = 26\). But there were only £25! Where did the extra pound come from?