Assume you have a chance to play the following game. You need to put numbers in all cells of a \(10\times10\) table so that the sum of numbers in each column is positive and the sum of numbers in each row is negative. Once you put your numbers you cannot change them. You need to pay £1 if you want to play the game and the prize for completing the task is £100. Is it possible to win?
Once again consider the game from Example 2.
(a) Will you change your answer if the field is a rectangle?
(b) The rules are changed. Now you win if the sum of numbers in each row is greater than 100 and the sum of the numbers in each column is less than 100. Is it possible to win?
Petya and Misha play such a game. Petya takes in each hand a coin: one – 10 pence, and the other – 15. After that, the contents of the left hand are multiplied by 4, 10, 12 or 26, and the contents of the right hand – by 7, 13, 21 or 35. Then Petya adds the two results and tells Misha the result. Can Misha, knowing this result, determine which hand – the right or left – contains the 10 pence coin?
On a board there are written 10 units and 10 deuces. During a game, one is allowed to erase any two numbers and, if they are the same, write a deuce, and if they are different then they can write a one. If the last digit left on the board is a unit, then the first player won, if it is a deuce then the second player wins.
Two grandmasters in turn put rooks on a chessboard (one turn – one rook) so that they cannot capture each other. The person who cannot put a rook on the chessboard loses. Who will win with the game – the first or second grandmaster?
Given a board (divided into squares) of the size: a) \(10\times 12\), b) \(9\times 10\), c) \(9\times 11\), consider the game with two players where: in one turn a player is allowed to cross out any row or any column if there is at least one square not crossed out. The loser is the one who cannot make a move. Is there a winning strategy for one of the players?
There is a system of equations \[\begin{aligned} * x + * y + * z &= 0,\\ * x + * y + * z &= 0,\\ * x + * y + * z &= 0. \end{aligned}\] Two people alternately enter a number instead of a star. Prove that the player that goes first can always ensure that the system has a non-zero solution.
A White Rook pursues a black bishop on a board of \(3 \times 1969\) cells (they walk in turn according to the usual rules). How should the rook play to take the bishop? White makes the first move.
Two play a game on a chessboard \(8 \times 8\). The player who makes the first move puts a knight on the board. Then they take turns moving it (according to the usual rules), whilst you can not put the knight on a cell which he already visited. The loser is one who has nowhere to go. Who wins with the right strategy – the first player or his partner?
On a table there are 2022 cards with the numbers 1, 2, 3, ..., 2022. Two players take one card in turn. After all the cards are taken, the winner is the one who has a greater last digit of the sum of the numbers on the cards taken. Find out which of the players can always win regardless of the opponent’s strategy, and also explain how he should go about playing.