The teacher on probability theory leaned back in his chair and looked at the screen. The list of those who signed up is ready. The total number of people turned out to be \(n\). Only they are not in alphabetical order, but in a random order in which they came to the class.
“We need to sort them alphabetically,” the teacher thought, “I’ll go down in order from the top down, and if necessary I’ll rearrange the student’s name up in a suitable place. Each name should be rearranged no more than once”.
Prove that the mathematical expectation of the number of surnames that you do not have to rearrange is \(1 + 1/2 + 1/3 + \dots + 1/n\).
Are there functions \(p (x)\) and \(q (x)\) such that \(p (x)\) is an even function and \(p (q (x))\) is an odd function (different from identically zero)?
The function \(f (x)\) is defined for all real numbers, and for any \(x\) the equalities \(f (x + 2) = f (2 - x)\) and \(f (x + 7) = f (7 - x)\) are satisfied. Prove that \(f (x)\) is a periodic function.
Solve the equation \(f (f (x)) = f (x)\) if \(f(x) = \sqrt[5]{3 - x^3 - x}\).
George drew an empty table of size \(50 \times 50\) and wrote on top of each column and to the left of each row, a number. It turned out that all 100 written numbers are different, and 50 of them are rational, and the remaining 50 are irrational. Then, in each cell of the table, he wrote down the sum of the numbers written at the start of the corresponding row and column (“addition table”). What is the largest number of sums in this table that could be rational numbers?
In a shopping centre, three machines sell coffee. During the day, the first machine can break down with a probability of 0.4 and the second with a probability of 0.3. Every evening, Mr Ivanov, the mechanic, comes and repairs all of the broken-down coffee machines. One day, Ivanov wrote, in his report, that the mathematical expectation of breakdowns during one week is 12. Prove that Mr Ivanov is exaggerating.
At the Antarctic station, there are \(n\) polar explorers, all of different ages. With the probability \(p\) between each two polar explorers, friendly relations are established, regardless of other sympathies or antipathies. When the winter season ends and it’s time to go home, in each pair of friends the senior gives the younger friend some advice. Find the mathematical expectation of the number of those who did not receive any advice.
In a tournament, 100 wrestlers are taking part, all of whom have different strengths. In any fight between two wrestlers, the one who is stronger always wins. In the first round the wrestlers broke into random pairs and fought each other. For the second round, the wrestlers once again broke into random pairs of rivals (it could be that some pairs will repeat). The prize is given to those who win both matches. Find:
a) the smallest possible number of tournament winners;
b) the mathematical expectation of the number of tournament winners.
At the ball, there were \(n\) married couples. In each pair, the husband and wife are of the same height, but there are no two pairs of the same height. The waltz begins, and all those who came to the ball randomly divide into pairs: each gentleman dances with a randomly chosen lady.
Find the mathematical expectation of the random variable \(X\), “the number of gentlemen who are shorter than their partners”.
On weekdays, the Scattered Scientist goes to work along the circle line on the London Underground from Cannon Street station to Edgware Road station, and in the evening he goes back (see the diagram).
Entering the station, the Scientist sits down on the first train that arrives. It is known that in both directions the trains run at approximately equal intervals, and along the northern route (via Farringdon) the train goes from Cannon Street to Edgware Road or back in 17 minutes, and along the southern route (via St James Park) – 11 minutes. According to an old habit, the scientist always calculates everything. Once he calculated that, from many years of observation:
– the train going counter-clockwise, comes to Edgware Road on average 1 minute 15 seconds after the train going clockwise arrives. The same is true for Cannon Street.
– on a trip from home to work the Scientist spends an average of 1 minute less time than a trip home from work.
Find the mathematical expectation of the interval between trains going in one direction.