Problems

Age
Difficulty
Found: 456

Prove that the only solution to \(5^a-3^b=2\) with \(a,b\) being positive integers is \(a=b=1\).

Show that Pell’s equation \(x^2-dy^2=1\) has a nontrivial solution.

For the following equations, find the integer solution \((x,y)\) with the smallest possible absolute value of \(y\).

  • \(x^2 - 7y^2 = 1\);

  • \(x^2 - 7y^2 = 29\).

Find the integer solution \((x,y)\) with the smallest possible absolute value of \(y\). \(x^2 - 2y^2 = 1\);

This equation helps to find all the square-triangular numbers, namely all the numbers that are perfect squares and can be represented as the sum \(1+2+3+...m\) for some \(m\). Finding such a number is equivalent to finding a solution to the equation: \(2n^2 = m(m+1)\). Or finding a solution to the Pell’s equation \(x^2-2y^2 = 1\) for \(x=2m+1\), \(y=2n\).

Hello! I have a trick for you. Think of a number, which we call the original number from now on. Do the following:

  1. Add fifteen to the original number.

  2. Multiply the resulting number by four.

  3. Add eight times the original number to the new result.

  4. Divide by six.

  5. Subtract twice the original number.

But I already know the finally answer! How?

Calculate the left side and the right side. \[2\times(12+3)\quad\quad 2\times 12 + 2\times 3\] \[3\times(0.8+1)\quad\quad 3\times 0.8 + 3\times 1\] \[(-2)\times (3-5)\quad\quad (-2)\times 3 + (-2)\times (-5)\] What do you notice?

Show that for any number \(a,b,c,d\), we have \((a+b)(c+d) = ac + ad + bc + bd\).

Expand \((x_1+\dots + x_n)^2\) where \(x_1,\dots,x_n\) are real numbers.

Prove the Cauchy-Schwarz inequality \[(a_1b_1+\dots+a_nb_n)^2\leq (a_1^2+\dots+a_n^2)(b_1^2+\dots+b_n^2)\] where \(a_1,\dots,a_n,b_1,\dots,b_n\) are real numbers. If you already know a proof (or more!), find a new one.

Prove that there exist infinitely many natural numbers \(a\) with the following property: the number \(z = n^4+a\) is not prime for any natural number \(n\).