Can 100 weights of masses 1, 2, 3, ..., 99, 100 be arranged into 10 piles of different masses so that the following condition is fulfilled: the heavier the pile, the fewer weights in it?
The graph of the function \(y=kx+b\) is shown on the diagram below. Compare \(|k|\) and \(|b|\).
The board has the form of a cross, which is obtained if corner boxes of a square board of \(4 \times 4\) are erased. Is it possible to go around it with the help of the knight chess piece and return to the original cell, having visited all the cells exactly once?
Prove that a graph with \(n\) vertices, the degree of each of which is at least \(\frac{n-1}{2}\), is connected.
In the Far East, the only type of transport is a carpet-plane. From the capital there are 21 carpet-planes, from the city of Dalny there is one carpet-plane, and from all of the other cities there are 20. Prove that you can fly from the capital to Dalny (possibly with interchanges).
Solve the equation \(3x + 5y = 7\) in integers.
Determine all integer solutions of the equation \(3x - 12y = 7\).
Determine all the integer solutions for the equation \(21x + 48y = 6\).
Solve the equations \(x^2 = 14 + y^2\) in integers.
Solve the equation with integers \(x^2 + y^2 = 4z - 1\).