Problems

Age
Difficulty
Found: 82

Prove that for all \(x \in (0;\pi /2)\) for \(n > m\), where \(n, m\) are natural, we have the inequality \(2 | \sin^n x-\cos^n x | \leq 3 | \sin^m x-\cos^m x |\);

A New Year’s garland, hanging along the school corridor, consists of red and blue light bulbs. Next to each red light bulb there must necessarily be a blue one. What is the largest number of red light bulbs in this garland, if it consists of only 50 light bulbs?

Mark has 1000 identical cubes, each of which has one pair of opposite faces which are coloured white, another pair which are blue and a third pair that are red. He made a large \(10 \times 10 \times 10\) cube from them, joining cubes to one another which have the same coloured faces. Prove that the large cube has a face which is solidly one colour.

In a country coming out of each city there are 100 roads and from each city it is possible to reach any other. One road was closed for repairs. Prove that even now you can get from every city to any other.

a) A piece of wire that is 120 cm long is given. Is it possible, without breaking the wire, to make a cube frame with sides of 10 cm?

b) What is the smallest number of times it will be necessary to break the wire in order to still produce the required frame?

Prove that out of \(n\) objects an even number of objects can be chosen in \(2^{n-1}\) ways.

Prove that every number \(a\) in Pascal’s triangle is equal to

a) the sum of the numbers of the previous right diagonal, starting from the leftmost number up until the one to the right above the number \(a\).

b) the sum of the numbers of the previous left diagonal, starting from the leftmost number to the one to left of the number which is above \(a\).

Prove that there exists a graph with 2n vertices whose degrees are \(1, 1, 2, 2, \dots , n, n\).

In a graph, all the vertices have degree of 3. Prove that there is a cycle in it.