Every Martian has three hands. Can seven Martians join hands?
At the vertices of a \(n\)-gon are the numbers \(1\) and \(-1\). On each side is written the product of the numbers at its ends. It turns out that the sum of the numbers on the sides is zero. Prove that a) \(n\) is even; b) \(n\) is divisible by 4.
There are 30 people, among which some are friends. Prove that the number of people who have an odd number of friends is even.
25 cells were coloured in on a sheet of squared paper. Can each of them have an odd number of coloured in neighbouring cells?
Can the degrees of vertices in the graph be equal to:
a) 8, 6, 5, 4, 4, 3, 2, 2?
b) 7, 7, 6, 5, 4, 2, 2, 1?
c) 6, 6, 6, 5, 5, 3, 2, 2?
In the graph, each vertex is either blue or green. Each blue vertex is linked to five blue and ten green vertices, and each green vertex is linked to nine blue and six green vertices. Which vertices are there more of – blue or green ones?
In a graph, three edges emerge from each vertex. Can there be a 1990 edges in this graph?
Prove that the number of US states with an odd number of neighbours is even.
Find the last digit of the number \(1 \times 2 + 2 \times 3 + \dots + 999 \times 1000\).
Is the number 12345678926 square?