You are given 12 different whole numbers. Prove that it is possible to choose two of these whose difference is divisible by 11.
Prove that amongst numbers written only using the number 1, i.e.: 1, 11, 111, etc, there is a number than is divisible by 1987.
Prove that in any group of 10 whole numbers there will be a few whose sum is divisible by 10.
Reception pupil Peter knows only the number 1. Prove that he can write a number divisible by 1989.
Prove that for any number \(d\), which is not divisible by \(2\) or by \(5\), there is a number whose decimal notation contains only ones and which is divisible by \(d\).
\(2n\) diplomats sit around a round table. After a break the same \(2n\) diplomats sit around the same table, but this time in a different order.
Prove that there will always be two diplomats with the same number of people sitting between them, both before and after the break.
Prove that if \(a, b, c\) are odd numbers, then at least one of the numbers \(ab-1\), \(bc-1\), \(ca-1\) is divisible by 4.
10 natural numbers are written on a blackboard. Prove that it is always possible to choose some of these numbers and write “\(+\)” or “\(-\)” between them so that the resulting algebraic sum is divisible by 1001.
Upon the installation of a keypad lock, each of the 26 letters located on the lock’s keypad is assigned an arbitrary natural number known only to the owner of the lock. Different letters do not necessarily have different numbers assigned to them. After a combination of different letters, where each letter is typed once at most, is entered into the lock a summation is carried out of the corresponding numbers to the letters typed in. The lock opens only if the result of the summation is divisible by 26. Prove that for any set of numbers assigned to the 26 letters, there exists a combination that will open the lock.
Reception pupil Peter knows only the number 1. Prove that he can write a number divisible by 2001.