At all rational points of the real line, integers are arranged. Prove that there is a segment such that the sum of the numbers at its ends does not exceed twice the number on its middle.
Of the four inequalities \(2x > 70\), \(x < 100\), \(4x > 25\) and \(x > 5\), two are true and two are false. Find the value of \(x\) if it is known that it is an integer.
On a plane, there are 1983 points and a circle of unit radius. Prove that there is a point on the circle, from which the sum of the distances to these points is no less than 1983.
Prove that in any infinite decimal fraction you can rearrange the numbers so that the resulting fraction becomes a rational number.
On a calculator keypad, there are the numbers from 0 to 9 and signs of two actions (see the figure). First, the display shows the number 0. You can press any keys. The calculator performs the actions in the sequence of clicks. If the action sign is pressed several times, the calculator will only remember the last click.
a) The button with the multiplier sign breaks and does not work. The Scattered Scientist pressed several buttons in a random sequence. Which result of the resulting sequence of actions is more likely: an even number or an odd number?
b) Solve the previous problem if the multiplication symbol button is repaired.
A high rectangle of width 2 is open from above, and the L-shaped domino falls inside it in a random way (see the figure).
a) \(k\) \(L\)-shaped dominoes have fallen. Find the mathematical expectation of the height of the resulting polygon.
b) \(7\) \(G\)-shaped dominoes fell inside the rectangle. Find the probability that the resulting figure will have a height of 12.